Micromechanical properties of hydrogels measured with MEMS resonant sensors.

نویسندگان

  • Elise A Corbin
  • Larry J Millet
  • James H Pikul
  • Curtis L Johnson
  • John G Georgiadis
  • William P King
  • Rashid Bashir
چکیده

Hydrogels have gained wide usage in a range of biomedical applications because of their biocompatibility and the ability to finely tune their properties, including viscoelasticity. The use of hydrogels on the microscale is increasingly important for the development of drug delivery techniques and cellular microenvironments, though the ability to accurately characterize their micromechanical properties is limited. Here we demonstrate the use of microelectromechanical systems (MEMS) resonant sensors to estimate the properties of poly(ethylene glycol) diacrylate (PEGDA) microstructures over a range of concentrations. These microstructures are integrated on the sensors by deposition using electrohydrodynamic jet printing. Estimated properties agree well with independent measurements made using indentation with atomic force microscopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of mass and swelling of hydrogel microstructures using MEMS resonant mass sensor arrays.

The use of hydrogels for biomedical engineering, and for the development of biologically inspired cellular systems at the microscale, is advancing at a rapid pace. Microelectromechanical system (MEMS) resonant mass sensors enable the mass measurement of a range of materials. The integration of hydrogels onto MEMS resonant mass sensors is demonstrated, and these sensors are used to characterize ...

متن کامل

Integrated Micromechanical Resonant Sensors for Inertial Measurement Systems

Thumbnail-sized inertial measurement systems based on Micro Electro Mechanical Systems (MEMS) technology have been perceived as a breakthrough in the field of inertial navigation. However, even as micromechanical accelerometers have seen widespread commercialization, vibratory micromechanical gyroscopes have not enjoyed similar success. Previous approaches to high-performance micromechanical gy...

متن کامل

Mechanical Characterization of (La,Sr)MnO3 Microbridges for Thermometric Applications

MicroElectroMechanical Systems (MEMS) made of heterostructures of crystalline oxide materials with targeted physical properties may be applied as sensors having different integrated functionalities. In this work, we explore the feasibility of manganite thin film based epitaxial MEMS for thermometric micromechanical sensing. We investigate the mechanical properties of La1−xSrxMnO3, with x ≈ 1/3,...

متن کامل

Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micro...

متن کامل

Investigation of Mems Resonator Characteristics during Long-term and Wide Temperature Variation Operation

Two types of single-crystal silicon micromechanical resonators having resonant frequencies at 150 kHz and 130 kHz were tested under harsh environment to investigate stability. To observe long-term stability, the main characteristics, such as resonant frequency and quality factor were measured over 2,500 hrs continuously while maintaining constant environmental temperature at 25°C±0.1°C. A separ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical microdevices

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2013